• pcb manufacturing
  • Printed Circuit Boards PCB Manufacturing steps

    PCB Manufacturing steps Following are the steps involved in fabrication of PCB. • Base material cutting • Drilling • Through hole plating • Layer film generation • Solder resist film generation • Legend printing film (optional) • Laminating • Exposing • Spray developing • Etching process • Solder resist masking • Legend printing (optional) Base material cutting  Base material which is selected based on application, may be epoxy resin (FR4), duroid (of required dielectric constant), is cut into the required size Drilling  Holes are drilled through the board using an automated drilling machine. A cnc drilling/milling machine, which is controlled by an Excellonfile with the hole position data and alis of the labels of the required drill bits, is used to drill the holes, to mill certain board contours and to produce multiple printed panel. The holes are used to mount electronic components on the board and to provide a conductive circuit from one layer of the board to another. Through hole plating Following drilling, the board is scrubbed to remove fine copper particles left by the drill. After being scrubbed, the board is cleaned and etched to promote good adhesion and then is plated with an additional layer of copper. Since the holes are not conductive, electrolysis copper plating is employed to provide a thin continuous conductive layer over the surface of the board and through the holes . Layer film For multilayer boards films must be produced according to the number of layers. Powerful software tools generate a plotfile, whose data control a photoplotter. After developing the films, they have to be inspected under table lamp for any track breaks, line shortages or missing of any track.  Solder resist film In order to ensure no shortings in the PCB due to formation of moisture, or due to spreading of solder leads, the complete board except the pads are to be soldered masked. This is done in CAD design tools and the photofilm is generated in the photoplotter. Thenthe  photofilm is developed. Legend printing film (optional ) […]

  • The Advantages of Solder Paste
  • The Advantages of Solder Paste Application-Part 3

    with_stencil

    The Advantages of Solder Paste Application The process of pre‐applying solder paste to the board, then resting the component upon the solder paste areas,  starts to make sense. The likelihood of a quality placement increases, since the solder paste is evenly spread under the component prior  to reflow. The question now, however, is how to apply the solder paste in such a successful way. That’s where the stencil comes into play. What is A Stencil? Stencils are customized to the board you’re assembling. Generally speaking, the stencil is made out of a solid sheet of material (aluminum, copper, and mylar are common).  There are generally two ways to obtain your stencil: make one yourself, of have a stencil company make one for you. Making Stencils Yourself Limor Fried, the founder of Adafruit Industries, and a highly influential force in the DIY community, has a great page on how to make your own solder paste stencils.    I love how her instructions start….  “You’ll need:   1. A laser cutter.” Now, some of us have access to a laser cutter, but that becomes a pretty big barrier for many of us.  Some searching on the internet shows reasonable desktop models for sale in the $5,000 range. I suppose if you’re really mechanically inclined, you might consider building your own laser cutter for less. A deeper search for laser cutters you can build yourself uncovers the instruction set that explains how you can,  for about $50, build your own laser cutter out of parts. The last item on the parts list? “A bushel of patience.” Further research leads us to an open‐source, build‐your‐own laser cutter kit. Quote from the Lasersaur people, developers of an open‐source laser cutter: “Laser cutters are traditionally expensive ($30,000 to as much as you can spend) and there are a lot of … designers… who could do great things with them ‐ if they could afford one, or even get regular access to one. Unfortunately, turnkey systems are expensive, and there isn’t really a clear and simple way to build one. We can change this: with roughly six months of R&D time we can develop a laser cutter which anyone can build, use, and maintain. Most importantly this system will be open source which means anyone can improve and modify the design. So, faced with this sort of an environment for getting your own equipment to help support you in creating your own stencils, the make vs. buy decision takes on another dimension: using a service to provide your stencil as a part of the manufacturing process.

  • solder paste
  • Apply Solder Paste Part 2

    solder-paste

    Apply Solder Paste To start the assembly process, solder paste needs to be added to those areas of the bare, unpopulated PCB board. Solder paste only goes where a component must be in electrically conductive contact with a metal landing pad on the board itself. Typically, this is achieved with a Solder Stencil. Using the solder screen placed directly onto the board and registered in the correct position, a runner is moved across the screen squeezing a  small amount of solder paste through the holes in the screen and onto the board.  As the solder screen has been generated from the printed circuit board files, it has holes on the positions of the solder pads, and in this way solder is deposited only on the solder pads. There are two basic types of solder stencils: framed stencils for use with solder paste machinery, and prototype stencils for hand‐application of solder paste. Pick‐and‐Place Components Pick‐and‐Place can occur either by hand, or by machine. With hand pick‐and‐place, a technician uses tweezers to arrange each component on top of the appropriate bits of solder paste.  As suggested by its name, with machine pick‐and‐place, a machine loaded with components picks the components and places them onto the board. The tension of the solder paste is usually enough to keep the components in place. The pick‐and place machine uses location and orientation information (commonly held in a Centroid file)  as the reference for placing the components onto the board correctly Centroid files can usually be derived from the CAD design data for the board design.  Heat/Reflow Solder Once the components have been added to the board, the next stage of the assembly  process is to pass it through the soldering machine. Especially for prototypes, reflow soldering techniques are the most common technique for SMT soldering, though wave soldering machines are sometimes employed. Test: Functional testing to ensure a working board. As we can see from this flow, the assembly process starts with the application of the solder paste.  This photograph of a board shows how surface mount components can be not only close together but also prone to misalignment or shorting if not precisely soldered.  It’s one thing to be able to solder a through‐hole component, filling the hole with a bead of solder.  It’s another thing entirely to tease solder under a chip type component such as the typical SMT package, without having solder or components slide around or solder create unintended short circuits.

  • Stencils
  • Using Stencils to Simplify the Printed Circuit Board Assembly Process Part 1

    smt

    The process of creating a prototype circuit board requires multiple phases and a large number of steps.  The process starts with the specification of the design, then proceeds through electrical design (often done with a schematic or similar symbolic notation), into the physical design (layout), manufacture of the printed circuit boards themselves, and culminates in the assembly of these boards. Errors can be induced at any one of these steps. Specification— Electrical Design— Physical Design— Manufacture— Assembly With the increase in the number of components available only in Surface Mount packages, assembly skills –at least for prototypes – will continue to move away from the realm of hand assembly by the design team.  If you’ve tried, then you know:  it’s one thing to handsolder an 0804 component  that’s tough enough.  Trying to work a soldering iron in and around anything smaller is difficult indeed. Especially considering that the weight of the component can be so light that a mis-directed exhale would move the components around the board.  And, of course, hand‐soldering a Ball Grid Array (BGA) or other similar package is just not feasible. The engineers who blog about soldering leadless packages overwhelmingly are doing nothing more than  creating breakout packages with the leadless component so as to facilitate bench testing of the component. So, like it or not, machine‐based assembly is increasingly becomiing a requirement.  The trouble is that purchasing pick‐ and‐place machinery can be cost prohibitive. Even if you have the pick‐and‐place equipment, you still need a stencil to guide the application of solder paste prior to placing the components. Where is the gap between hand assembly and outsourced assembly? And where does the purchase of a stencil fit in bridging that gap? The Board Assembly Process: Apply Solder Paste—Pick‐and‐Place Components—Heat /reflow solder—Cool—Test